Assignment 9

True/False questions, not to turn in:

- The order of an element modulo n is always 1 or an even number.
- Let $p>2$ be a prime. A polynomial of odd degree over \mathbb{Z}_{p} necessarily has a root.
- If a polynomial $f(x)$ with integer coefficients has no solutions modulo a prime p, then it also has no solution modulo other primes.
- If \bar{a} is a primitive root modulo a prime p, then \bar{a} is also a primitive root modulo other primes.
- If $\bar{a}=\bar{b}^{2}$ then a cannot be a primitive root.

Questions to turn in:

1. Find a primitive root modulo $p=53$ using the techniques we learned in class. Use it to find at least 2 more primitive roots.
2. In normal calculus we have the formula: $\log _{a}(c)=\frac{\log _{b}(c)}{\log _{b}(a)}$. Is the same true when discussing discrete logarithms in \mathbb{Z}_{p} ? i.e. when a, b are primitive roots modulo p, and \bar{c} is a nonzero element, is it the case that $\log _{b}(c)=\log _{a}(c) \log _{b}(a)$? Either prove or provide a counterexample.
3. Suppose that $f: \mathbb{Z}_{p}^{*} \rightarrow \mathbb{Z}_{p-1}$ is a well-defined, 1-1 function from the set of nonzero residues modulo p to the set of residues modulo $p-1$ that has the property that $f(x y)=f(x)+f(y)$ for all $x, y \in \mathbb{Z}_{p}^{*}$. Show that it is in fact a discrete logarithm function for some primitive root. (All discrete logarithms would have those properties). Here are some steps to help you:

- Show there must be an a such that $f(a)=1$.
- Show that a is a primitive root, i.e. that the order of a is $p-1$. The function f and its properties can help you with that.
- Show that f equals the discrete logarithm with base a.

4. Illustrate the Diffie-Hellman protocol for $p=53$, using the primitive root you found in question 1. You will need to use two randomly selected numbers between 1 and $51=53-2$, use the numbers 10 and 14 . What is the secret shared key in this instance, and what are the messages that Alice and Bob exchange?
5. According to our theory, the polynomial $x^{13}-1$ would have exactly 13 roots in \mathbb{Z}_{53} (make sure you understand why). In other words, there are exactly 13 elements in \mathbb{Z}_{53} such that $x^{13}=1$. Find those elements. Here are some steps to help you:

- Find one such element that is not 1 . Our technique for finding a primitive root should help.
- Try powers of that element. Explain why they would also have this property.

