Assignment 7

True/False questions, not to turn in (but you should DO them):

- For every $n>2$, and any $0<a, b<n$, there is an x such that $a x=b \bmod n$.
- If $x=0 \bmod 11$ and $x=0 \bmod 13$, then it must be that $x=0$.
- For any prime $p>2$ there is an x such that $x+x=1 \bmod p$.
- For any prime $p>2$ there is an x such that $x \cdot x=1 \bmod p$.
- For every prime $p>2$ there is a solution to the equation $x^{2}=-1 \bmod p$ (i.e. a square root of -1 exists).
- There are primes $p>2$ for which there is a solution to the equation $x^{2}=-1 \bmod p$.
- If $n>2$ is not prime, there are integers $0<x<n$ such that no power of x equals 1.

Questions to turn in:

1. Find all solutions to the equation $12 x+5=11 \bmod 57$.
2. Which congruence classes modulo 11 are third powers (i.e. they are equal to x^{3} for some x)?
3. Using our base-26 representation of the english alphabet, encrypt the message "NUMBERSROCK" via the multiplication-by-11 algorithm. Then demonstrate how someone would go about decrypting the message.
4. In \mathbb{Z}_{3} we want to consider all monic degree- 2 polynomials, so all polynomials of the form $x^{2}+b x+c$ where $b, c \in \mathbb{Z}_{3}$. There are 3×3 such polynomials. List them, then determine which of those polynomials have "roots" (i.e. values of $x \in \mathbb{Z}_{3}$ that would make the polynomial equal to 0), and how many roots they have.
5. Use Fermat's theorem to compute $7^{2015} \bmod 11$.
