Assignment 10

True/False questions, not to turn in:

- If $p>2$ is a prime, and if $2 p+1$ and $9 p+4$ are both prime, then $\left(\frac{2 p+1}{9 p+4}\right)=1$. (Make sure you also have proof one way or the other)
- If $p>2$ and $q=p+2$ are both prime, then $\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right)$.
- The product of two "positive residues" is a "positive residue".
- Let a be relatively prime to the prime p. For each "negative residue" k compute $a \cdot k$, and denote by g^{\prime} the number of those products that result in "positive residues". Then $g^{\prime}=g$.
- Let a be relatively prime to the prime p. For each "positive residue" k compute $a \cdot k$, and denote by g^{\prime} the number of those products that result in "positive residues". Then $g^{\prime}=g$.

Questions to turn in:

1. Using Euler's identity, we determined the quadratic character for -1 , namely the Law of Quadratic Reciprocity for $\left(\frac{-1}{p}\right)$. Prove the same result by computing g instead, and using Gauss's Lemma.
2. During the proof that $T(a, p)=g \bmod 2$, we used that a is an odd number. What happens when a is even? Can you demonstrate an example with p odd, a even, where $T(a, p) \neq g \bmod 2$?
3. Demonstrate that $T(p, q)+T(q, p)=\frac{p-1}{2} \times \frac{q-1}{2}$ by computing both sides directly, for $p=13$ and $q=17$.
4. The Law of Quadratic Reciprocity can help us determine if the equation $x^{2}+b x+c=$ 0 has a solution modulo p. The equation can be rewritten as:

$$
\left(x+\frac{b}{2}\right)^{2}=\frac{b^{2}-4 c}{4}
$$

So it will only have a solution if the quantity $b^{2}-4 c$ is a square modulo p. Use this on the equation $x^{2}+13 x+4=0$ to find: At least two primes p for which there is a solution and at least two primes p for which there is not. For the primes for which there is a solution, find it using the above formula. Note that for each prime the equation should have 2 solutions, so you will be finding in total 4 solutions, 2 each for each of the two primes.
5. Compute $\left(\frac{7}{17}\right)$ in a number of different ways:
a. Computing all the squares mod17.
b. Using Euler's Identity and computing $7^{8} \bmod 17$.
c. Using Gauss's Lemma and computing g.
d. Using Eisenstein's Lemma and computing $T(7,17)$.
e. Using the Laws of Quadratic Reciprocity to reduce the symbol to smaller symbols.

You should of course get the same result in all cases.

