Key limits:
For all \(n > 0\): \[\lim_{x\to\infty}x^n = \infty,\qquad \lim_{x\to \infty}x^{-n}=0\] For odd whole numbers \(n\): \[\lim_{x\to -\infty}x^n = -\infty\] For even whole numbers \(n\): \[\lim_{x\to -\infty}x^n = \infty\] For all whole numbers \(n\): \[\lim_{x\to -\infty}x^{-n} = 0\]
Limits of rational functions behave in the same way as their leading terms:
\[\lim_{x\to\pm\infty}\frac{a_n x^n + a_{n-1}x^{n-1}+\cdots + a_0}{b_m x^m + b_{m-1}x^{m-1}+\cdots + b_0} =\frac{a_n}{b_n}\lim_{x\to\pm\infty} x^{n-m}\]
Another approach to limits at infinity: Set \(t=\frac{1}{x}\), look at \(t\to 0^+\) or \(t\to 0^-\).